翻訳と辞書 |
Dinic's algorithm : ウィキペディア英語版 | Dinic's algorithm Dinic's algorithm or Dinitz's algorithm is a strongly polynomial algorithm for computing the maximum flow in a flow network, conceived in 1970 by Israeli (formerly Soviet) computer scientist Yefim (Chaim) A. Dinitz. The algorithm runs in time and is similar to the Edmonds–Karp algorithm, which runs in time, in that it uses shortest augmenting paths. The introduction of the concepts of the ''level graph'' and ''blocking flow'' enable Dinic's algorithm to achieve its performance. ==History== Yefim Dinitz invented this algorithm in response to a pre-class exercise in Adel'son-Vel'sky's (co-inventor of AVL trees) Algorithm class. At the time he was not aware of the basic facts regarding Ford-Fulkerson algorithm.〔(【引用サイトリンク】 author = Ilan Kadar, Sivan Albagli )〕 Dinitz mentions inventing his algorithm in January 1969, which was published in 1970 in journal ''Doklady Akademii nauk SSSR''. In 1974, Shimon Even and (his then Ph.D. student) Alon Itai at the Technion in Haifa were very curious and intrigued by the Dinitz's algorithm as well as Alexander Karzanov's idea of blocking flow. However it was hard to decipher these two papers for them, each being limited to four pages to meet the restrictions of journal ''Doklady Akademii nauk SSSR''. However Even did not give up and after three days of effort managed to understand both papers except for the layered network maintenance issue. Over the next couple of years, Even gave lectures on "Dinic's algorithm" mispronouncing the name of the author while popularizing it. Even and Itai also contributed to this algorithm by combining BFS and DFS, which is the current version of algorithm For about 10 years of time after Ford–Fulkerson algorithm was invented, it was unknown if it can be made to terminate in polynomial time in the generic case of irrational edge capacities. This caused lack of any known polynomial time algorithm that solved max flow problem in generic case. Dinitz algorithm and the Edmonds–Karp algorithm, which was published in 1972, independently showed that in the Ford–Fulkerson algorithm, if each augmenting path is the shortest one, the length of the augmenting paths is non-decreasing and it always terminated.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Dinic's algorithm」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|